
Dissipative systems 

This chapter on dissipative systems is to a great extent based on reference [Oh]. 

A dissipative system is described by ordinary differential eqations where the flow in phase space contracts. 

In classical mechanics this is the case for a system with friction, where energy goes into the exterior system. 

�̇�1 = 𝑓1(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)

�̇�2 = 𝑓2(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)
⋮

�̇�𝑛 = 𝑓𝑛(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)

 𝑛-dimensional system 

If all 𝑓𝑘 are independent of time (𝑡) the system is autonomous, 𝒙(𝑡0) = (𝑥1, 𝑥2, … , 𝑥𝑛) determines a unique 

future (assuming that 𝑓𝑘 fullfills Lipschitz conditions) which will be assumed henceforth. 

These systems are called flows. If both history and future is determined by 𝒙(𝑡0), it’s called invertible. 

A plot of 𝑥𝑘 against 𝑡 is called a time series. Dynamics is best analyzed using phase space representations 

where states are represented by ponts in ℝ𝑛. Trajectories and orbits are solutions 𝒙(𝑡) plotted for 𝑡 > 0. 

Flows are trajectories with directions given by increasing 𝑡. Trajectories do not cross if 𝑓𝑘 independent of 𝑡. 

Non-autonomous systems can be handled by introducing 𝑡 as a state variable on an extra axis, this makes the 

system autonomous with no crossings. A plot of all possible trajectories is a phase portrait. 

 

 

 

 

 

 

 

 

 

 

 

 

In the Lorenz system (𝑋, 𝑌, 𝑍) all trajectories are converging towards the 

attractor as 𝑡 → ∞. The attractor becomes like a phase portrait on its own 

 

 

 

  

• • 

Angular displacement 

A
n
g
u
la

r 
v
el

o
ci

ty
 

0 2𝜋 𝜋 −𝜋 −2𝜋 

Phase portrait of pendulum  

𝜙 

�̇� 

𝜙 

𝜙ሷ +
𝑔

𝑙
sin 𝜙 = 0 

 

൝
𝑥1 = 𝜙

𝑥2 = �̇�
→ ൝

�̇�1 = 𝑥2

�̇�2 = −
𝑔

𝑙
sin 𝑥1

 

𝑋(𝑡) 

𝑡 

𝑋(𝑇) jumping between two values at irregular intervals 

Strange attractor of the Lorenz system 

Elliptic fixpoint is marginally stable. 

Orbits don’t grow or shrink towards it. 



One-dimensional  

Poincare section 

Two-dimensional  

Poincare section 

Two-dimensional  

phase space 

Three-dimensional  

phase space 

Trajectories of dynamical systems �̇� = 𝒇(𝒙) 

• When the system is in equilibrium at a fixed point 𝒙∗, there is a stedy state solution 

∀𝑡 > 𝑡0 ∶  𝒙(𝑡) = 𝒙(𝑡0) = 𝒙∗  →  𝒇(𝒙∗) = 0. 

The pendulum has a fixed point when it hangs down (𝜙, �̇�) = (0,0) + 𝑘 ⋅ (2𝜋, 0) and 

an fixed point when it hangs upside down, pointing upwards (𝜙, �̇�) = (𝜋, 0) + 𝑘 ⋅ (2𝜋, 0). 

• Periodic orbits or cycles, for flows means loops in phase space. 

A periodic orbit has a period, the smallest 𝑇 such that ∀𝑡 ∶  𝜙(𝑡 + 𝑇) = 𝜙(𝑡)  

which can be parametrized with an angle 𝛼 and an angular velocity 𝑥(𝑡) = 𝑥(𝛼(𝑡)) ,  𝛼 = 𝜔𝑡 

• Quasi-periodic orbits can be parametrized with two or more angles: 

𝑥(𝑡) = 𝑥(𝛼1(𝑡), 𝛼2(𝑡)) ,  {
𝛼1 = 𝜔1𝑡
𝛼2 = 𝜔2𝑡 where 

𝜔1

𝜔2
∈ ℝ ∖ ℚ (irrational)  

(  𝜔1/𝜔2 ∈ ℚ would result in a periodic orbit ) 

 

 

 

 

 

 

• Then there are trajectories that approach a fixed point, cycle or quasi-periodic orbit asymptotically. 

• And finally there are chaotic trajecories with SIC. 

Poincaré maps 

Dynamics of complicated flows can be simplified in a way that retains essential dynamic properties by using 

Poincaré maps that look at intersections between an (𝑛 − 1)-dimensional surface ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = 0 and the 

trajectories of �̇� = 𝒇(𝒙). Only intersections in one direction through the surface are considered. 

 

 

 

 

 

 

 

 

 

 

 

The dimension is reduced by one and the dynamics is simplified to a discrete map with similar dynamics. 

Stability analysis 

What was said about stability for discrete maps can be used for continuous maps as well. Start with a trajectory 

𝒙(𝑡) and a small perturbation at 𝑡0, 𝜹𝒙(𝑡0). This gives rise to another trajectory �̃�(𝑡) = 𝒙(𝑡) + 𝜹𝒙(𝑡). 

Exponetial separation |𝜹𝒙(𝑡)|/ |𝜹𝒙(𝑡0)| ∝ 𝑒𝜆𝑡 is the sign of chaos. Exponential separation is only for a limited 

time when the trajectories are bounded but extended local exponential separation can still go on by taking place 

on a strectched and folded manifold.

A 2-frequency quasi-periodic orbit 

in ℝ3 fills the surface of a torus. 



Eigenvalues 

−  − 

Eigenvalues 

+  − 

Eigenvalues 

 +  + 

Perturbation spirals 

towards fixed point. 

Different stability properties 

in different directions. 

 

Let a box surround the initial value 𝑥𝑘(0) ± Δ𝑥𝑘(0) with volume 𝛿𝑉(0) and follow all trajectories in the 

ensemble, �̃� = 𝒙 + 𝜹𝒙 →  �̇� + 𝜹�̇� = 𝒇(𝒙 + 𝜹𝒙). Taylor expand for small perturbations → 𝜹�̇� = 𝑫𝒇(𝒙)𝜹𝒙 

with Jacobian matrix 𝑫𝒇(𝒙) which varies with the point of evaluation. 

For eigenvector 𝒗𝑘 with eigenvalue ℎ of 𝑫𝒇: (𝑫𝒇)𝒗𝑘 = ℎ𝒗𝑘 where ℎ is a solution to det(𝑫𝒇 − ℎ𝑰) = 0, 

for 𝜹𝒙(0) = 휀𝒗: 𝜹𝒙(Δ𝑡) = 𝜹𝒙(0) ⋅ 𝑒ℎΔt = 휀𝑒ℎΔ𝑡𝒗. For a general perturbation 𝜹𝒙(Δ𝑡) = ∑ 휀𝑘𝑒ℎ𝑘Δ𝑡𝒗𝑘
𝑛
𝑘=1 . 

Stability is decided by the eigenvalue with largest real part ℎ1:   
Stable Unstable Undecided

𝑅𝑒(ℎ1) < 0 𝑅𝑒(ℎ1) > 0 𝑅𝑒(ℎ1) = 0
  

 

 

 

 

 

 

 

 

 

 

 

Lyapunov exponents 

The exponential separation of nearby trajectories is given by the Lyapunov exponent 𝜆. Nearby points in phase  

space separates as |𝜹𝒙(𝑡2)|/|𝜹𝒙(𝑡1)| ≈ 𝑒𝜆(𝑡2−𝑡1)  →  ln(|𝜹𝒙(𝑡)|) ≈ 𝜆𝑡 + const. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stretching and folding was the basic mechanism for chaos in 1-dimensinal iterations and so it is for higher-

dimensional continuous systems as well. Stretching gives the exponential separation while folding is a 

consequence of non-linearity that stabilizes the system to a limited volume. In linear systems there is only 

stretching and no chaos. 

For dissipative systems there is stretching in one direction and compression in others so that volume decreases 

while trajectories diverge. 

The criterions for a chaotic trajectory are: 

• It is bounded 

• Neither a fixed point, periodic, or quasi-periodic and it does not approach such a trajectory. 

• It has a positive Lyapunov exponent.  

Inward spiral Outward spiral

ℎ𝑘 ∈ ℂ ∖ ℝ ∶ 𝑅𝑒(ℎ𝑘) < 0 ℎ𝑘 ∈ ℂ ∖ ℝ ∶ 𝑅𝑒(ℎ𝑘) > 0
r 
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The diagram shows ln|𝜹𝒙(𝑡)| relative to another 

orbit in the Lorenz system. 

The mean slope gives the largest Lyapunov 

exponent of the system. 

When distances exceed the attractor size the 

exponential separation breaks down. 

 

The Lyapunov exponents turn out to be the 

identical for most initial conditions lying in an 

attractor’s basin of attraction 



Chaos and the dimension of phase space 

The non-crossing of orbits forbids chaos in 1-dimensional systems. 

 

 

 

 

 

 

A mathematical proof that no chaotic trajectories can exist in 2-dimensional phase space is given by 

Poincare-Bendixsons theorem, an important theorem in non-linear dynamics. 

For 3-dimensional flows and in higher dimensions chaos is always a possibility since trajectories can pass each 

other by going below or above in some extra dimension. 

 

Definition of dissipative systems 

A physical system where energy flows in and out of the system is called dissipative. 

 

 

 

 

 

 

Friction is an energy sink that takes energy out of a system and transforms it to heat in the surroundings. 

Another example of a dissipative system is the body. We eat food as an energy source and we radiate heat. 

Dissipative systems tend to have a behavior where they end up in their normal ways after a disturbance. This 

normal behavior need not be a fixed state or a periodic state, it can be chaotic but chaotic in a well-defined 

manner given by an attractor to the system. Ensembles of trajectories in phase space often shrinks toward an 

attractor with non-integer dimension, Cantor-like structure and self-similarity at different scales. Volume 

contraction in phase space gives a strict mathematical definition of dissipative systems. 

A dissipative flow is given by a set of autonomous differential equations �̇� = 𝒇(𝒙) for which a volume element 

enclosed by a surface 𝑆 in phase space is not an invariant, usually it contracts: 

𝑑𝑉

𝑑𝑡
= ∫ (∑

𝜕𝒇𝑘

𝜕𝒙𝑘

𝑛

𝑘=1

) 𝑑𝑛𝒙

𝑉

< 0 

For the Lorenz system: 

൝
�̇� = −𝜎𝑋 + 𝜎𝑌
�̇� = −𝑋𝑍 + 𝑟𝑋 − 𝑌
�̇� = 𝑋𝑌 − 𝑏𝑍

 →  
𝑑𝑉

𝑑𝑡
= −(𝜎 + 1 + 𝑏)𝑉 < 0 (𝜎 > 0, 𝑏 > 0) 

As volume decreases, trajectories will approach a limit region. The dynamics before the attractor is approached 

is called transient, a temporary phase that fades away and which is often ignored. 

  

Try to continue the trajectory so that it never closes and never 

leaves the circle and you will find it trapped in narrow tunnels, 

leaving less and less room for exponential separation. 

There can be no chaos in 2-dimensional flows 

Conservative 

system 

Dissipative  

system 

Energy 
source 

Energy 
sink 



Pendulum 

A pendulkum withoput friction is conservative 𝜙ሷ + (𝑔/𝑙) ⋅ sin 𝜙 = 0, energy flows between gravitational 

potential energy and kinetic energy. All energy flows are within the system. With friction such as air resistance 

there will be a damping term 𝛾�̇� that opposes the motion 𝜙ሷ + 𝛾�̇� + (𝑔/𝑙) ⋅ sin 𝜙 = 0. Energy is lost to heat in 

the surrounding air, it’s a dissipative system. 

 

 

 

 

 

 

 

 

 

 

Systems with an energy sink and no energy source like the damped pendulum will come to rest at a fixed point 

attractor. To get more interesting motion you need an energy source. This could be a periodic driving force 

accomplished by charging the pendulum and putting it in an oscillating electric field with frequency 𝜔. 

 

 

 

 

 

 

 

 

 

With time a state variable (𝑥1, 𝑥2, 𝑥3) = (𝜙, �̇�, 𝑡) the system will be autonomous without crossing trajectories. 

The orbits of the figure will be extended into an extra perpendicular dimension that represents time and the 

orbits will no longer cross each other. 

Linearizing sin 𝜙 ≈ 𝜙 for small angles gives an equation that can be solved with elementary functions. 

𝜙(𝑡) = 𝜙𝑝(𝑡) + 𝜙ℎ(𝑡) = 𝐶1 sin 𝜔𝑡 + 𝐶2𝑒−𝜆𝑡/2 sin(𝜔0𝑡 + 𝜙0) 

The asymptotic trajectory is given by the periodic solution 𝜙𝑝(𝑡) ∝ sin 𝜔𝑡. 

Every orbit of the linear pendulum with restoring force ∝ 𝜙 shrinks to the periodic orbit, a periodic attractor. 

More about the dynamics of a driven damped pendulum can be found on this link. 

 

Volume contraction 

A system is conservative if there are coordinates in phase space for which no ensemble of points change 

volume as time goes. If there can be such a volume change it’s dissipative. 

Look at a small volume Δ𝑉(𝑡), a box around a point 𝒙(𝑡) with sides 휀𝑘 along eigenvector 𝑘 of the Jacobian. 

At time Δ𝑡 the sides will be 휀𝑘𝑒ℎ𝑘Δ𝑡 where ℎ𝑘(𝑡) is eigenvalue 𝑘.  

𝜙ሷ + 𝛾�̇� + (𝑔/𝑙) sin 𝜙 = 𝐴 sin 𝜔𝑡 

 

Trajectory in phase space with 

an elliptic periodic attractor. 

Note that the system is non-

autonomous (time dependent) 

and that orbits in the (𝜙, �̇�)- 

space cross themselves. 

 

𝜙 

�̇� 

Equation of a pendulum with 

damping and a driving force.  

�̇� 

�̇� 

𝜙 𝜙 2𝜋 

Phase portraits of undamped and damped pendulum. 

𝜙 

http://galileoandeinstein.phys.virginia.edu/7010/CM_22a_Period_Doubling_Chaos.html


Δ𝑉(𝑡 + Δ𝑡)

Δ𝑣(𝑡)
= ∏

휀𝑘𝑒ℎ𝑘Δ𝑡

휀𝑘

𝑛

𝑘 = 1

= exp ( ∑ ℎ𝑘 ⋅ Δ𝑡

𝑛

𝑘 = 1

) 

ln(Δ𝑉(𝑡 + Δ𝑡)) − ln(Δ𝑉(𝑡))

Δ𝑡
= ∑ ℎ𝑘

𝑛

𝑘 = 1

 

𝑑

𝑑𝑡
ln Δ𝑉 = ∑ ℎ𝑘

𝑛

𝑘 = 1

 

1

Δ𝑉

𝑑

𝑑𝑡
Δ𝑉 = ∑ ℎ𝑘(𝑡)

𝑛

𝑘 = 1

 (Volume contraction rate changes along the trajectory) 

 
∑ ℎ𝑘 < 0 → Phase space volume contracts locally around 𝒙 

∑ ℎ𝑘 > 0 → Phase space volume expands locally around 𝒙 

This is true even if ℎ𝑘 ∈ ℂ since ℎ𝑘 come in conjugate pairs with real sum. 

Application to the pendulum 

𝜙ሷ + 𝛾�̇� +
𝑔

𝑙
sin 𝜙 = 0 {

𝑥1 = 𝜙

𝑥2 = �̇�
 →  ൝

�̇�1 = 𝑥2

�̇�2 = −
𝑔

𝑙
sin 𝑥1 − 𝛾𝑥2

 →  𝑫𝒇(𝒙) = (
0 1

−
𝑔

𝑙
cos 𝑥1 −𝛾) 

Eigenvalues: ℎ1,2 = −
𝛾

2
± √(𝛾/2)2 −

𝑔

𝑙
cos 𝑥1  →  

1

Δ𝑉

𝑑

𝑑𝑡
Δ𝑉 = −𝛾 

Without damping and no driving force, no volume contraction and a conservative system. 

With damping 𝛾 > 0 volume contracts to zero and a dissipative system. 

Alternative method without decomposition into eigenvalues 

There is a simpler method that don’t need decomposition and eigenvalues. 

The figure shows a phase space volume Δ𝑉 evolving from time 𝑡 to time 𝑡 + Δ𝑡. 

The surface Δ𝑆 of Δ𝑉 is divided into sections 𝑑𝑆𝑖. A point on 𝑑𝑆𝑖 evolves from 𝒙𝑖 

to 𝒙𝑖 + Δ𝒙𝑖, resulting in a volume change Δ𝒙𝑖 ⋅ 𝒏𝑖 𝑑𝑆𝑖 with 𝒏𝑖 being the unit normal of 𝑑𝑆𝑖. 

Integration gives a volume change: 

Δ𝑉(𝑡 + Δ𝑡) − Δ𝑉(𝑡) = ∫ Δ𝒙 ⋅ 𝒏
Δ𝑆

𝑑𝑆 →  (divide by Δ𝑡) 

𝑑

𝑑𝑡
Δ𝑉 = ∫ �̇� ⋅ 𝒏

Δ𝑆
𝑑𝑆 →  (Gauss′ theorem) 

𝑑

𝑑𝑡
Δ𝑉 = ∫ div(�̇�)

Δ𝑉
𝑑𝑉 

div(�̇�) ≡ ∑
𝜕�̇�𝑘

𝜕𝑥𝑘

𝑛

𝑘 = 1

 is the 𝐋𝐢𝐞 𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 

If Δ𝑉 is small and  div(�̇�) can be assumed constant in Δ𝑉 we get:  

 

1

Δ𝑉

𝑑

𝑑𝑡
Δ𝑉 = ∑

𝜕�̇�𝑘

𝜕𝑥𝑘

(𝑡)

𝑛

𝑘 = 1

 



Comparing with the method of eigenvector decomposition gives: 

∑ ℎ𝑘

𝑛

𝑘 = 1

= ∑
𝜕�̇�𝑘

𝜕𝑥𝑘

𝑛

𝑘 = 1

 

which reflects the theorem from linear algebra that the trace of matrix (sum of doagonal lelements) in this case 

the Jacobian is independent of the choice of basis. For the damped pendulum: 

൝
�̇�1 = 𝑥2

�̇�2 = −
𝑔

𝑙
sin 𝑥1 − 𝛾𝑥2

  →  ∑
𝜕�̇�𝑘

𝜕𝑥𝑘

𝑛

𝑘 = 1

=
𝜕

𝜕𝑥1

(𝑥2) +
𝜕

𝜕𝑥2
(−

𝑔

𝑙
sin 𝑥1 − 𝛾𝑥2) = −𝛾 (as before) 

Attractors 

 

 

 

 

 

 

 

 

 

 

 

 

A closed set 𝐴 in the set 𝑋 of states 𝒙 is an attractor if and only if 

1. 𝐴 is invariant, 𝒙(𝑡1) ∈ 𝐴 ⇒ 𝒙(𝑡2) ∈ 𝐴 for all 𝑡2 > 𝑡1 

2. There is an open set 𝐵 such that 𝐵 ⊃ 𝐴 and 𝒙(𝑡) ∈ 𝐵 ⇒ lim
𝑡→∞

𝑥(𝑡) ∈ 𝐴 

3. 𝐴 is minimal, no smaller set 𝐴′ ⊂ 𝐴 fulfills condition 1 and 2. 

The largest possible B in condition 2 is the basin of attraction. 

The phase space volume B asymptotically shrinks to A. 

Vol(𝐴) < Vol(𝐵) ⇒ Only dissipative systems can have attractors. 

Attractors with non-integer Hausdorff dimension (fractal structure) are called strange attractors. 

Chaotic dynamics in dissipative systems is usually associated with strange attractors. 

 

The Duffing oscillator 

A basic example of nonlinearity, chaotic dynamics and a strange attractor is the Duffing oscillator, a mass 

attached to a spring with non-linear restoring force. 

 

 

 

 

 

If the volume contracts at an exponential rate we 

expect an ensemble of orbits to contract to a 

vanishing volume in 𝑛-space. Time to take a closer 

look at attractors that are not fixed points, cycles or 

quasi-periodic. 

An attractor A has a basin of attraction B where 

trajectories 𝑥(𝑡) reach A asymptotically as 𝑡 → ∞. 

Trajectories that start in A, 𝑥′(𝑡) come close to all 

points of A and trajectories 𝑥′′(𝑡) outside B never 

reach B (or A). 𝜕𝐵 is the basin boundary. 

Newton’s lax 𝑚𝑥ሷ = 𝐹tot = 𝐹Restore + 𝐹Damping + 𝐹External 

Assume 𝐹𝑅 to be ‘symmetric’ under compression/extension’ 

𝐹𝑅(−𝑥) = −𝐹𝑅(𝑥) and sgn(𝐹𝑅(𝑥)) = −sgn(𝑥) (opposite direction of extension) 

Damping force: 𝐹𝐷 = −𝛾�̇� 

External driving force: 𝐹𝐸 = 𝛼 sin 𝜔𝑡 

𝑚𝑥ሷ = 𝐹𝑅(𝑥) − 𝛾�̇� + 𝛼 sin 𝜔𝑡 



A Duffing oscillator is a spring with simplest non-linear restoring force 𝐹𝑅 = −𝛽𝑥3 = 𝑘(𝑥) ⋅ 𝑥, 

with 𝑘(𝑥) = 𝛽𝑥2, a spring that get harder as it stretches or compresses, a hardening spring, 

𝑚𝑥ሷ + 𝛾�̇� + 𝛽𝑥3 = 𝛼 sin 𝜔𝑡. Duffing oscillators have been used to model skyscrapers and oil rigs. 

With appropriately chosen units it can be written  

𝑥ሷ + 𝑐�̇� + 𝑥3 = 𝐴 sin 𝑡  →  {

�̇�1 = 𝑥2

�̇�2 = −𝑥1
3 − 𝑐𝑥2 + 𝐴 sin 𝑥3 

�̇�3 = 1
  

Lie derivative:

∑ 𝜕𝑘�̇�𝑘

𝑘

= −𝑐 < 0 

As 𝐴 varies there will be periodic attractors followed by period doublings and later a strange attractor. 

 

 

 

 

 

 

  

Time series 𝑥(𝑡) and 1-loop 

attractor in reduced phase space. 2 -loop attractor after bifurcation. 

𝐴 = 1 𝐴 = 5 𝐴 = 7.5 

Non-periodic strange attractor. 

Poincaré section for the trajectory of the Duffing oscillator with 𝐴 = 7.5 



The Kaplan-Yorke conjecture 

The box dimension 𝐷𝐵 of a strange attractor (S) and the Lyapunov exponents are related. For a 3-dimensional 

phase space with a Poincare map in two dimensions with Lyapunov exponents 𝜆1 (positive) and 𝜆2 (negative) 

there is the Kaplan-Yorke conjecture which states that: 

For 2D-maps 
|𝛿𝐴(𝑁)| ≈ |𝛿𝐴(0)| ⋅ 𝑒(𝜆1+𝜆2)𝑁

𝜆1 + 𝜆2 < 0
} ⇒ 1 < 𝐷𝐵 < 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical experiments support the conjecture. 

For the Duffing oscillator with 𝐴 = 7.5 there is agreement between clalculations based on log-log plots of the 

number of boxes needed to cover 𝑆 and the Kaplan-Yorke conjecture, 𝐷𝐵(𝑆) = 1.67 − 1.68. 

Dimension of the strange attractor of the Lorenz system 

The Lie Derivative is: 

𝜕

𝜕𝑋
(−𝑎𝑋 + 𝑎𝑌) +

𝜕

𝜕𝑌
(𝑟𝑋 − 𝑌 − 𝑋𝑍) +

𝜕

𝜕𝑍
(𝑋𝑌 − 𝑏𝑍) = −𝑎 − 1 − 𝑏 = −41/3  (𝑎 = 10, 𝑏 = 8/3, 𝑟 = 28) 

This gives a contraction factor of 10−6 at Δ𝑡 = 1. 

The largest Lyapunov exponent is 𝜆1 = 0.96 

There is no contraction along the trajectory so 𝜆2 = 0 (parametrized by 𝑡). 

𝜆1 + 𝜆2 + 𝜆3 equals the Lie derivative, if it’s constant this gives 𝜆3 ≈ −14.63 

The generalized Kaplan-Yorke for higher dimensions is: 

with Lyapunov exponents in falling order and 

𝑗 the index for smallest non-negative exponent. 

Lorenz system: 𝑗 = 2 →  𝐷𝐵(𝑆) = 2 +
0.96+0

|−14.63|
= 2.07 

In good agreement with direct calculation which gives 

dimension 2.06 → 𝐷 = 1.06 for a Poincare section. 

𝐷𝐵(𝑆) = 1 −
𝜆1

𝜆2
 

𝜆1 > 0 

𝜆2 < 0 
trajectory 

Cover 𝑆 with squares of side 휀, then the minimum 

number of squares required to cover 𝑆 is 𝑁(휀). 

After 𝑁 steps and time 𝑡 for the Poincaré map the 

square has been stretched by a factor 𝑒𝜆1𝑡 and 

compressed in the other direction by a factor 𝑒𝜆2𝑡. 

Cover 𝑆 with boxes of size the short edge of 𝐵, 

휀̃ = 휀𝑒𝜆2𝑡 → 𝑡 =
1

𝜆2
ln

휀̃

휀
 

All boxes in the initial covering has been mapped all 

over S, the number of boxes of side 휀̃ will be: 

𝑁(휀̃) =
휀𝑒𝜆1𝑡

휀𝑒𝜆2𝑡
𝑁(휀) = 𝑒(𝜆1−𝜆2)𝑡𝑁(휀) 

𝑁(휀̃)

𝑁(휀)
= 𝑒(𝜆1−𝜆2)𝑡 = 𝑒(𝜆1−𝜆2)/𝜆2⋅ln(�̃�/𝜀) = (

휀̃

휀
)

−(1−
𝜆1
𝜆2

)

 

𝐷𝐵(𝑆) = 1 −
𝜆1

𝜆2
 

𝐷𝐵(𝑆) = 𝑗 +
𝜆1 + 𝜆2 + ⋯ + 𝜆𝑗

|𝜆𝑗+1|
 

 

Z𝑘 

Z𝑘 

Poincare section for Z-plane is 

like 1-dimensional tent map. 

Theory of 1D-iterations can be 

used on the continuous case.  


